Metamath Proof Explorer


Theorem mdandyvr5

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr5.1 φζ
mdandyvr5.2 ψσ
mdandyvr5.3 χψ
mdandyvr5.4 θφ
mdandyvr5.5 τψ
mdandyvr5.6 ηφ
Assertion mdandyvr5 χσθζτσηζ

Proof

Step Hyp Ref Expression
1 mdandyvr5.1 φζ
2 mdandyvr5.2 ψσ
3 mdandyvr5.3 χψ
4 mdandyvr5.4 θφ
5 mdandyvr5.5 τψ
6 mdandyvr5.6 ηφ
7 3 2 bitri χσ
8 4 1 bitri θζ
9 7 8 pm3.2i χσθζ
10 5 2 bitri τσ
11 9 10 pm3.2i χσθζτσ
12 6 1 bitri ηζ
13 11 12 pm3.2i χσθζτσηζ