Metamath Proof Explorer


Theorem mdandyvr6

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr6.1 φζ
mdandyvr6.2 ψσ
mdandyvr6.3 χφ
mdandyvr6.4 θψ
mdandyvr6.5 τψ
mdandyvr6.6 ηφ
Assertion mdandyvr6 χζθστσηζ

Proof

Step Hyp Ref Expression
1 mdandyvr6.1 φζ
2 mdandyvr6.2 ψσ
3 mdandyvr6.3 χφ
4 mdandyvr6.4 θψ
5 mdandyvr6.5 τψ
6 mdandyvr6.6 ηφ
7 3 1 bitri χζ
8 4 2 bitri θσ
9 7 8 pm3.2i χζθσ
10 5 2 bitri τσ
11 9 10 pm3.2i χζθστσ
12 6 1 bitri ηζ
13 11 12 pm3.2i χζθστσηζ