Metamath Proof Explorer


Theorem mdandyvrx2

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx2.1 φζ
mdandyvrx2.2 ψσ
mdandyvrx2.3 χφ
mdandyvrx2.4 θψ
mdandyvrx2.5 τφ
mdandyvrx2.6 ηφ
Assertion mdandyvrx2 χζθστζηζ

Proof

Step Hyp Ref Expression
1 mdandyvrx2.1 φζ
2 mdandyvrx2.2 ψσ
3 mdandyvrx2.3 χφ
4 mdandyvrx2.4 θψ
5 mdandyvrx2.5 τφ
6 mdandyvrx2.6 ηφ
7 1 3 axorbciffatcxorb χζ
8 2 4 axorbciffatcxorb θσ
9 7 8 pm3.2i χζθσ
10 1 5 axorbciffatcxorb τζ
11 9 10 pm3.2i χζθστζ
12 1 6 axorbciffatcxorb ηζ
13 11 12 pm3.2i χζθστζηζ