Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axorbciffatcxorb.1 | ||
| axorbciffatcxorb.2 | |||
| Assertion | axorbciffatcxorb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axorbciffatcxorb.1 | ||
| 2 | axorbciffatcxorb.2 | ||
| 3 | 1 | axorbtnotaiffb | |
| 4 | xor3 | ||
| 5 | 3 4 | mpbi | |
| 6 | 5 2 | aiffnbandciffatnotciffb | |
| 7 | df-xor | ||
| 8 | 6 7 | mpbir |