Metamath Proof Explorer


Theorem axorbciffatcxorb

Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses axorbciffatcxorb.1
|- ( ph \/_ ps )
axorbciffatcxorb.2
|- ( ch <-> ph )
Assertion axorbciffatcxorb
|- ( ch \/_ ps )

Proof

Step Hyp Ref Expression
1 axorbciffatcxorb.1
 |-  ( ph \/_ ps )
2 axorbciffatcxorb.2
 |-  ( ch <-> ph )
3 1 axorbtnotaiffb
 |-  -. ( ph <-> ps )
4 xor3
 |-  ( -. ( ph <-> ps ) <-> ( ph <-> -. ps ) )
5 3 4 mpbi
 |-  ( ph <-> -. ps )
6 5 2 aiffnbandciffatnotciffb
 |-  -. ( ch <-> ps )
7 df-xor
 |-  ( ( ch \/_ ps ) <-> -. ( ch <-> ps ) )
8 6 7 mpbir
 |-  ( ch \/_ ps )