Description: Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aibnbna.1 | |- ( ph -> ps ) |
|
| aibnbna.2 | |- -. ps |
||
| Assertion | aibnbna | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aibnbna.1 | |- ( ph -> ps ) |
|
| 2 | aibnbna.2 | |- -. ps |
|
| 3 | 2 1 | mto | |- -. ph |