Metamath Proof Explorer


Theorem aibnbaif

Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016)

Ref Expression
Hypotheses aibnbaif.1
|- ( ph -> ps )
aibnbaif.2
|- -. ps
Assertion aibnbaif
|- ( ph <-> F. )

Proof

Step Hyp Ref Expression
1 aibnbaif.1
 |-  ( ph -> ps )
2 aibnbaif.2
 |-  -. ps
3 1 2 aibnbna
 |-  -. ph
4 3 bifal
 |-  ( ph <-> F. )