Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aibnbaif.1 | |- ( ph -> ps ) |
|
| aibnbaif.2 | |- -. ps |
||
| Assertion | aibnbaif | |- ( ph <-> F. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aibnbaif.1 | |- ( ph -> ps ) |
|
| 2 | aibnbaif.2 | |- -. ps |
|
| 3 | 1 2 | aibnbna | |- -. ph |
| 4 | 3 | bifal | |- ( ph <-> F. ) |