Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aibnbaif.1 | ⊢ ( 𝜑 → 𝜓 ) | |
aibnbaif.2 | ⊢ ¬ 𝜓 | ||
Assertion | aibnbaif | ⊢ ( 𝜑 ↔ ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aibnbaif.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | aibnbaif.2 | ⊢ ¬ 𝜓 | |
3 | 1 2 | aibnbna | ⊢ ¬ 𝜑 |
4 | 3 | bifal | ⊢ ( 𝜑 ↔ ⊥ ) |