Metamath Proof Explorer


Theorem aibnbaif

Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016)

Ref Expression
Hypotheses aibnbaif.1 ( 𝜑𝜓 )
aibnbaif.2 ¬ 𝜓
Assertion aibnbaif ( 𝜑 ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 aibnbaif.1 ( 𝜑𝜓 )
2 aibnbaif.2 ¬ 𝜓
3 1 2 aibnbna ¬ 𝜑
4 3 bifal ( 𝜑 ↔ ⊥ )