Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aibnbaif.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| aibnbaif.2 | ⊢ ¬ 𝜓 | ||
| Assertion | aibnbaif | ⊢ ( 𝜑 ↔ ⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aibnbaif.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | aibnbaif.2 | ⊢ ¬ 𝜓 | |
| 3 | 1 2 | aibnbna | ⊢ ¬ 𝜑 |
| 4 | 3 | bifal | ⊢ ( 𝜑 ↔ ⊥ ) |