Metamath Proof Explorer


Theorem aiffbtbat

Description: Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses aiffbtbat.1 ( 𝜑𝜓 )
aiffbtbat.2 ( ⊤ ↔ 𝜓 )
Assertion aiffbtbat ( 𝜑 ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 aiffbtbat.1 ( 𝜑𝜓 )
2 aiffbtbat.2 ( ⊤ ↔ 𝜓 )
3 1 2 bitr4i ( 𝜑 ↔ ⊤ )