Metamath Proof Explorer


Theorem aiffbtbat

Description: Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses aiffbtbat.1 φ ψ
aiffbtbat.2 ψ
Assertion aiffbtbat φ

Proof

Step Hyp Ref Expression
1 aiffbtbat.1 φ ψ
2 aiffbtbat.2 ψ
3 1 2 bitr4i φ