Metamath Proof Explorer


Theorem aiffbtbat

Description: Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses aiffbtbat.1
|- ( ph <-> ps )
aiffbtbat.2
|- ( T. <-> ps )
Assertion aiffbtbat
|- ( ph <-> T. )

Proof

Step Hyp Ref Expression
1 aiffbtbat.1
 |-  ( ph <-> ps )
2 aiffbtbat.2
 |-  ( T. <-> ps )
3 1 2 bitr4i
 |-  ( ph <-> T. )