Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | astbstanbst.1 | |- ( ph <-> T. ) | |
| astbstanbst.2 | |- ( ps <-> T. ) | ||
| Assertion | astbstanbst | |- ( ( ph /\ ps ) <-> T. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | astbstanbst.1 | |- ( ph <-> T. ) | |
| 2 | astbstanbst.2 | |- ( ps <-> T. ) | |
| 3 | 1 | aistia | |- ph | 
| 4 | 2 | aistia | |- ps | 
| 5 | 3 4 | pm3.2i | |- ( ph /\ ps ) | 
| 6 | 5 | bitru | |- ( ( ph /\ ps ) <-> T. ) |