Metamath Proof Explorer


Theorem astbstanbst

Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses astbstanbst.1
|- ( ph <-> T. )
astbstanbst.2
|- ( ps <-> T. )
Assertion astbstanbst
|- ( ( ph /\ ps ) <-> T. )

Proof

Step Hyp Ref Expression
1 astbstanbst.1
 |-  ( ph <-> T. )
2 astbstanbst.2
 |-  ( ps <-> T. )
3 1 aistia
 |-  ph
4 2 aistia
 |-  ps
5 3 4 pm3.2i
 |-  ( ph /\ ps )
6 5 bitru
 |-  ( ( ph /\ ps ) <-> T. )