Metamath Proof Explorer


Theorem mdandyvrx9

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx9.1 φζ
mdandyvrx9.2 ψσ
mdandyvrx9.3 χψ
mdandyvrx9.4 θφ
mdandyvrx9.5 τφ
mdandyvrx9.6 ηψ
Assertion mdandyvrx9 χσθζτζησ

Proof

Step Hyp Ref Expression
1 mdandyvrx9.1 φζ
2 mdandyvrx9.2 ψσ
3 mdandyvrx9.3 χψ
4 mdandyvrx9.4 θφ
5 mdandyvrx9.5 τφ
6 mdandyvrx9.6 ηψ
7 2 1 3 4 5 6 mdandyvrx6 χσθζτζησ