Metamath Proof Explorer
Description: The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 7-Feb-2019)
|
|
Ref |
Expression |
|
Hypotheses |
mdetf.d |
|
|
|
mdetf.a |
|
|
|
mdetf.b |
|
|
|
mdetf.k |
|
|
Assertion |
mdetcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetf.d |
|
| 2 |
|
mdetf.a |
|
| 3 |
|
mdetf.b |
|
| 4 |
|
mdetf.k |
|
| 5 |
1 2 3 4
|
mdetf |
|
| 6 |
5
|
ffvelcdmda |
|