Metamath Proof Explorer


Theorem mdetcl

Description: The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 7-Feb-2019)

Ref Expression
Hypotheses mdetf.d D=NmaDetR
mdetf.a A=NMatR
mdetf.b B=BaseA
mdetf.k K=BaseR
Assertion mdetcl RCRingMBDMK

Proof

Step Hyp Ref Expression
1 mdetf.d D=NmaDetR
2 mdetf.a A=NMatR
3 mdetf.b B=BaseA
4 mdetf.k K=BaseR
5 1 2 3 4 mdetf RCRingD:BK
6 5 ffvelcdmda RCRingMBDMK