Metamath Proof Explorer


Theorem mercolem2

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem2 φψφχθφ

Proof

Step Hyp Ref Expression
1 merco2 φφφφφφφφφ
2 merco2 φφφφψφψφχθφ
3 merco2 φψφφχθφ
4 merco2 φψφφχθφχθφφψφφφψ
5 3 4 ax-mp χθφφψφφφψ
6 merco2 χθφφψφφφψφφψχθφφφψφχθφ
7 5 6 ax-mp φφψχθφφφψφχθφ
8 merco2 φφψχθφφφψφχθφφψφχθφφφψφφφφφψ
9 7 8 ax-mp φψφχθφφφψφφφφφψ
10 merco2 φψφχθφφφψφφφφφψφφφφψφψφχθφφφφφφφφφφφφφφφφφφφφψφχθφ
11 9 10 ax-mp φφφφψφψφχθφφφφφφφφφφφφφφφφφφφφψφχθφ
12 2 11 ax-mp φφφφφφφφφφφφφφφφφφφψφχθφ
13 1 12 ax-mp φφφφφφφφφφψφχθφ
14 1 13 ax-mp φψφχθφ