Metamath Proof Explorer


Theorem merlem5

Description: Step 11 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem5 φψ¬¬φψ

Proof

Step Hyp Ref Expression
1 meredith ψψ¬ψ¬ψψψψψψψ
2 meredith ψψ¬ψ¬¬¬φψφφψ¬¬φψ
3 merlem1 φψ¬¬φψ¬ψψ¬ψ¬ψψψψψψψ¬φ¬ψψ¬ψ¬ψψψψψψψ
4 merlem4 φψ¬¬φψ¬ψψ¬ψ¬ψψψψψψψ¬φ¬ψψ¬ψ¬ψψψψψψψφψ¬¬φψ¬ψψ¬ψ¬ψψψψψψψ¬φ¬ψψ¬ψ¬ψψψψψψψφψψ¬ψ¬¬¬φψφ
5 3 4 ax-mp φψ¬¬φψ¬ψψ¬ψ¬ψψψψψψψ¬φ¬ψψ¬ψ¬ψψψψψψψφψψ¬ψ¬¬¬φψφ
6 meredith φψ¬¬φψ¬ψψ¬ψ¬ψψψψψψψ¬φ¬ψψ¬ψ¬ψψψψψψψφψψ¬ψ¬¬¬φψφψψ¬ψ¬¬¬φψφφψ¬¬φψψψ¬ψ¬ψψψψψψψφψ¬¬φψ
7 5 6 ax-mp ψψ¬ψ¬¬¬φψφφψ¬¬φψψψ¬ψ¬ψψψψψψψφψ¬¬φψ
8 2 7 ax-mp ψψ¬ψ¬ψψψψψψψφψ¬¬φψ
9 1 8 ax-mp φψ¬¬φψ