Metamath Proof Explorer


Theorem minimp-ax1

Description: Derivation of ax-1 from ax-mp and minimp . (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion minimp-ax1 φ ψ φ

Proof

Step Hyp Ref Expression
1 minimp-syllsimp φ ψ φ ψ φ
2 minimp-syllsimp φ ψ φ ψ φ φ ψ φ
3 1 2 ax-mp φ ψ φ