Metamath Proof Explorer


Theorem moabs

Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002) Shorten proof and avoid df-eu . (Revised by BJ, 14-Oct-2022)

Ref Expression
Assertion moabs *xφxφ*xφ

Proof

Step Hyp Ref Expression
1 ax-1 *xφxφ*xφ
2 nexmo ¬xφ*xφ
3 id *xφ*xφ
4 2 3 ja xφ*xφ*xφ
5 1 4 impbii *xφxφ*xφ