Metamath Proof Explorer


Theorem moanim

Description: Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 xφ
Assertion moanim *xφψφ*xψ

Proof

Step Hyp Ref Expression
1 moanim.1 xφ
2 ibar φψφψ
3 1 2 mobid φ*xψ*xφψ
4 simpl φψφ
5 1 4 exlimi xφψφ
6 3 5 moanimlem *xφψφ*xψ