Metamath Proof Explorer


Theorem moanimv

Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023)

Ref Expression
Assertion moanimv *xφψφ*xψ

Proof

Step Hyp Ref Expression
1 ibar φψφψ
2 1 mobidv φ*xψ*xφψ
3 simpl φψφ
4 3 exlimiv xφψφ
5 2 4 moanimlem *xφψφ*xψ