Metamath Proof Explorer


Theorem mopntop

Description: The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion mopntop D∞MetXJTop

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 mopntopon D∞MetXJTopOnX
3 topontop JTopOnXJTop
4 2 3 syl D∞MetXJTop