Metamath Proof Explorer


Theorem mpoeq123i

Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013)

Ref Expression
Hypotheses mpoeq123i.1 A=D
mpoeq123i.2 B=E
mpoeq123i.3 C=F
Assertion mpoeq123i xA,yBC=xD,yEF

Proof

Step Hyp Ref Expression
1 mpoeq123i.1 A=D
2 mpoeq123i.2 B=E
3 mpoeq123i.3 C=F
4 1 a1i A=D
5 2 a1i B=E
6 3 a1i C=F
7 4 5 6 mpoeq123dv xA,yBC=xD,yEF
8 7 mptru xA,yBC=xD,yEF