Metamath Proof Explorer


Theorem mpoexg

Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypothesis mpoexg.1 F=xA,yBC
Assertion mpoexg ARBSFV

Proof

Step Hyp Ref Expression
1 mpoexg.1 F=xA,yBC
2 elex BSBV
3 elex BVBV
4 3 ralrimivw BVxABV
5 2 4 syl BSxABV
6 1 mpoexxg ARxABVFV
7 5 6 sylan2 ARBSFV