Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Functions in maps-to notation
mpteq1OLD
Metamath Proof Explorer
Description: Obsolete version of mpteq1 as of 11-Nov-2024. (Contributed by Mario
Carneiro , 16-Dec-2013) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
mpteq1OLD
⊢ A = B → x ∈ A ⟼ C = x ∈ B ⟼ C
Proof
Step
Hyp
Ref
Expression
1
eqidd
⊢ x ∈ A → C = C
2
1
rgen
⊢ ∀ x ∈ A C = C
3
mpteq12
⊢ A = B ∧ ∀ x ∈ A C = C → x ∈ A ⟼ C = x ∈ B ⟼ C
4
2 3
mpan2
⊢ A = B → x ∈ A ⟼ C = x ∈ B ⟼ C