Metamath Proof Explorer


Theorem mpteq1df

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq1df.1 x φ
mpteq1df.2 φ A = B
Assertion mpteq1df φ x A C = x B C

Proof

Step Hyp Ref Expression
1 mpteq1df.1 x φ
2 mpteq1df.2 φ A = B
3 eqidd φ C = C
4 1 2 3 mpteq12df φ x A C = x B C