Metamath Proof Explorer


Theorem mpteq1df

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq1df.1 xφ
mpteq1df.2 φA=B
Assertion mpteq1df φxAC=xBC

Proof

Step Hyp Ref Expression
1 mpteq1df.1 xφ
2 mpteq1df.2 φA=B
3 eqidd φC=C
4 1 2 3 mpteq12df φxAC=xBC