Metamath Proof Explorer


Theorem mpteq1iOLD

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq1i.1 A = B
Assertion mpteq1iOLD x A C = x B C

Proof

Step Hyp Ref Expression
1 mpteq1i.1 A = B
2 mpteq1 A = B x A C = x B C
3 1 2 ax-mp x A C = x B C