Metamath Proof Explorer


Theorem mstri2

Description: Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion mstri2 M MetSp C X A X B X A D B C D A + C D B

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 1 2 msmet2 M MetSp D X × X Met X
4 mettri2 D X × X Met X C X A X B X A D X × X B C D X × X A + C D X × X B
5 3 4 sylan M MetSp C X A X B X A D X × X B C D X × X A + C D X × X B
6 simpr2 M MetSp C X A X B X A X
7 simpr3 M MetSp C X A X B X B X
8 6 7 ovresd M MetSp C X A X B X A D X × X B = A D B
9 simpr1 M MetSp C X A X B X C X
10 9 6 ovresd M MetSp C X A X B X C D X × X A = C D A
11 9 7 ovresd M MetSp C X A X B X C D X × X B = C D B
12 10 11 oveq12d M MetSp C X A X B X C D X × X A + C D X × X B = C D A + C D B
13 5 8 12 3brtr3d M MetSp C X A X B X A D B C D A + C D B