Metamath Proof Explorer


Theorem mulscan1d

Description: Cancellation of surreal multiplication when the left term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulscan2d.1 φANo
mulscan2d.2 φBNo
mulscan2d.3 φCNo
mulscan2d.4 φC0s
Assertion mulscan1d φCsA=CsBA=B

Proof

Step Hyp Ref Expression
1 mulscan2d.1 φANo
2 mulscan2d.2 φBNo
3 mulscan2d.3 φCNo
4 mulscan2d.4 φC0s
5 1 3 mulscomd φAsC=CsA
6 2 3 mulscomd φBsC=CsB
7 5 6 eqeq12d φAsC=BsCCsA=CsB
8 1 2 3 4 mulscan2d φAsC=BsCA=B
9 7 8 bitr3d φCsA=CsBA=B