Metamath Proof Explorer


Theorem mvllmuli

Description: Move the left term in a product on the LHS to the RHS, inference form. Uses divcan4i . (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvllmuli.1 A
mvllmuli.2 B
mvllmuli.3 A0
mvllmuli.4 AB=C
Assertion mvllmuli B=CA

Proof

Step Hyp Ref Expression
1 mvllmuli.1 A
2 mvllmuli.2 B
3 mvllmuli.3 A0
4 mvllmuli.4 AB=C
5 2 1 3 divcan4i BAA=B
6 1 2 4 mulcomli BA=C
7 6 oveq1i BAA=CA
8 5 7 eqtr3i B=CA