Metamath Proof Explorer
		
		
		
		Description:  A power series variable is an element of the base set.  (Contributed by Mario Carneiro, 29-Dec-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mvrf.s |  | 
					
						|  |  | mvrf.v |  | 
					
						|  |  | mvrf.b |  | 
					
						|  |  | mvrf.i |  | 
					
						|  |  | mvrf.r |  | 
					
						|  |  | mvrcl2.x |  | 
				
					|  | Assertion | mvrcl2 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvrf.s |  | 
						
							| 2 |  | mvrf.v |  | 
						
							| 3 |  | mvrf.b |  | 
						
							| 4 |  | mvrf.i |  | 
						
							| 5 |  | mvrf.r |  | 
						
							| 6 |  | mvrcl2.x |  | 
						
							| 7 | 1 2 3 4 5 | mvrf |  | 
						
							| 8 | 7 6 | ffvelcdmd |  |