Metamath Proof Explorer
Description: A power series variable is an element of the base set. (Contributed by Mario Carneiro, 29-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
mvrf.s |
|
|
|
mvrf.v |
|
|
|
mvrf.b |
|
|
|
mvrf.i |
|
|
|
mvrf.r |
|
|
|
mvrcl2.x |
|
|
Assertion |
mvrcl2 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mvrf.s |
|
2 |
|
mvrf.v |
|
3 |
|
mvrf.b |
|
4 |
|
mvrf.i |
|
5 |
|
mvrf.r |
|
6 |
|
mvrcl2.x |
|
7 |
1 2 3 4 5
|
mvrf |
|
8 |
7 6
|
ffvelrnd |
|