Metamath Proof Explorer


Theorem ndmaov

Description: The value of an operation outside its domain, analogous to ndmafv . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion ndmaov ¬ABdomFAFB=V

Proof

Step Hyp Ref Expression
1 df-aov AFB=F'''AB
2 ndmafv ¬ABdomFF'''AB=V
3 1 2 eqtrid ¬ABdomFAFB=V