Metamath Proof Explorer


Theorem ndmaovg

Description: The value of an operation outside its domain, analogous to ndmovg . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion ndmaovg dom F = R × S ¬ A R B S A F B = V

Proof

Step Hyp Ref Expression
1 opelxp A B R × S A R B S
2 eleq2 R × S = dom F A B R × S A B dom F
3 2 eqcoms dom F = R × S A B R × S A B dom F
4 1 3 bitr3id dom F = R × S A R B S A B dom F
5 4 notbid dom F = R × S ¬ A R B S ¬ A B dom F
6 5 biimpa dom F = R × S ¬ A R B S ¬ A B dom F
7 ndmaov ¬ A B dom F A F B = V
8 6 7 syl dom F = R × S ¬ A R B S A F B = V