Metamath Proof Explorer


Theorem ndmaovg

Description: The value of an operation outside its domain, analogous to ndmovg . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion ndmaovg ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → (( 𝐴 𝐹 𝐵 )) = V )

Proof

Step Hyp Ref Expression
1 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴𝑅𝐵𝑆 ) )
2 eleq2 ( ( 𝑅 × 𝑆 ) = dom 𝐹 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ) )
3 2 eqcoms ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ) )
4 1 3 bitr3id ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ( 𝐴𝑅𝐵𝑆 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ) )
5 4 notbid ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ( 𝐴𝑅𝐵𝑆 ) ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ) )
6 5 biimpa ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 )
7 ndmaov ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → (( 𝐴 𝐹 𝐵 )) = V )
8 6 7 syl ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → (( 𝐴 𝐹 𝐵 )) = V )