| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
| 2 |
|
eleq2 |
⊢ ( ( 𝑅 × 𝑆 ) = dom 𝐹 → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) ) |
| 3 |
2
|
eqcoms |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) ) |
| 4 |
1 3
|
bitr3id |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) ) |
| 5 |
4
|
notbid |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
| 7 |
|
ndmaov |
⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → (( 𝐴 𝐹 𝐵 )) = V ) |
| 8 |
6 7
|
syl |
⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → (( 𝐴 𝐹 𝐵 )) = V ) |