| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelxp |
|- ( <. A , B >. e. ( R X. S ) <-> ( A e. R /\ B e. S ) ) |
| 2 |
|
eleq2 |
|- ( ( R X. S ) = dom F -> ( <. A , B >. e. ( R X. S ) <-> <. A , B >. e. dom F ) ) |
| 3 |
2
|
eqcoms |
|- ( dom F = ( R X. S ) -> ( <. A , B >. e. ( R X. S ) <-> <. A , B >. e. dom F ) ) |
| 4 |
1 3
|
bitr3id |
|- ( dom F = ( R X. S ) -> ( ( A e. R /\ B e. S ) <-> <. A , B >. e. dom F ) ) |
| 5 |
4
|
notbid |
|- ( dom F = ( R X. S ) -> ( -. ( A e. R /\ B e. S ) <-> -. <. A , B >. e. dom F ) ) |
| 6 |
5
|
biimpa |
|- ( ( dom F = ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> -. <. A , B >. e. dom F ) |
| 7 |
|
ndmaov |
|- ( -. <. A , B >. e. dom F -> (( A F B )) = _V ) |
| 8 |
6 7
|
syl |
|- ( ( dom F = ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> (( A F B )) = _V ) |