Metamath Proof Explorer


Theorem necon3bbid

Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007)

Ref Expression
Hypothesis necon3bbid.1 φψA=B
Assertion necon3bbid φ¬ψAB

Proof

Step Hyp Ref Expression
1 necon3bbid.1 φψA=B
2 1 bicomd φA=Bψ
3 2 necon3abid φAB¬ψ
4 3 bicomd φ¬ψAB