Metamath Proof Explorer


Theorem necon3d

Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006)

Ref Expression
Hypothesis necon3d.1 φA=BC=D
Assertion necon3d φCDAB

Proof

Step Hyp Ref Expression
1 necon3d.1 φA=BC=D
2 1 necon3ad φCD¬A=B
3 df-ne AB¬A=B
4 2 3 syl6ibr φCDAB