Metamath Proof Explorer


Theorem necon4ai

Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 22-Nov-2019)

Ref Expression
Hypothesis necon4ai.1 AB¬φ
Assertion necon4ai φA=B

Proof

Step Hyp Ref Expression
1 necon4ai.1 AB¬φ
2 notnot φ¬¬φ
3 1 necon1bi ¬¬φA=B
4 2 3 syl φA=B