Metamath Proof Explorer


Theorem neeqtrrd

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses neeqtrrd.1 φAB
neeqtrrd.2 φC=B
Assertion neeqtrrd φAC

Proof

Step Hyp Ref Expression
1 neeqtrrd.1 φAB
2 neeqtrrd.2 φC=B
3 2 eqcomd φB=C
4 1 3 neeqtrd φAC