Metamath Proof Explorer


Theorem negne0bi

Description: A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999)

Ref Expression
Hypothesis negidi.1 A
Assertion negne0bi A0A0

Proof

Step Hyp Ref Expression
1 negidi.1 A
2 negeq0 AA=0A=0
3 1 2 ax-mp A=0A=0
4 3 necon3bii A0A0