Metamath Proof Explorer
		
		
		
		Description:  Equality theorem for negated membership.  (Contributed by FL, 10-Aug-2016)  (Proof shortened by Wolf Lammen, 25-Nov-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | neleq12d.1 |  | 
					
						|  |  | neleq12d.2 |  | 
				
					|  | Assertion | neleq12d |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neleq12d.1 |  | 
						
							| 2 |  | neleq12d.2 |  | 
						
							| 3 | 1 2 | eleq12d |  | 
						
							| 4 | 3 | notbid |  | 
						
							| 5 |  | df-nel |  | 
						
							| 6 |  | df-nel |  | 
						
							| 7 | 4 5 6 | 3bitr4g |  |