Metamath Proof Explorer


Theorem nelprd

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Hypotheses nelprd.1 φAB
nelprd.2 φAC
Assertion nelprd φ¬ABC

Proof

Step Hyp Ref Expression
1 nelprd.1 φAB
2 nelprd.2 φAC
3 neanior ABAC¬A=BA=C
4 elpri ABCA=BA=C
5 4 con3i ¬A=BA=C¬ABC
6 3 5 sylbi ABAC¬ABC
7 1 2 6 syl2anc φ¬ABC