Metamath Proof Explorer


Theorem nelpri

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses nelpri.1 AB
nelpri.2 AC
Assertion nelpri ¬ABC

Proof

Step Hyp Ref Expression
1 nelpri.1 AB
2 nelpri.2 AC
3 neanior ABAC¬A=BA=C
4 elpri ABCA=BA=C
5 4 con3i ¬A=BA=C¬ABC
6 3 5 sylbi ABAC¬ABC
7 1 2 6 mp2an ¬ABC