Metamath Proof Explorer


Theorem nexdh

Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)

Ref Expression
Hypotheses nexdh.1 φxφ
nexdh.2 φ¬ψ
Assertion nexdh φ¬xψ

Proof

Step Hyp Ref Expression
1 nexdh.1 φxφ
2 nexdh.2 φ¬ψ
3 1 2 alrimih φx¬ψ
4 alnex x¬ψ¬xψ
5 3 4 sylib φ¬xψ