Metamath Proof Explorer


Theorem nf5dh

Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Oct-2021)

Ref Expression
Hypotheses nf5dh.1 φxφ
nf5dh.2 φψxψ
Assertion nf5dh φxψ

Proof

Step Hyp Ref Expression
1 nf5dh.1 φxφ
2 nf5dh.2 φψxψ
3 1 2 alrimih φxψxψ
4 nf5-1 xψxψxψ
5 3 4 syl φxψ