Metamath Proof Explorer


Theorem nfbidv

Description: An equality theorem for nonfreeness. See nfbidf for a version without disjoint variable condition but requiring more axioms. (Contributed by Mario Carneiro, 4-Oct-2016) Remove dependency on ax-6 , ax-7 , ax-12 by adapting proof of nfbidf . (Revised by BJ, 25-Sep-2022)

Ref Expression
Hypothesis albidv.1 φ ψ χ
Assertion nfbidv φ x ψ x χ

Proof

Step Hyp Ref Expression
1 albidv.1 φ ψ χ
2 1 exbidv φ x ψ x χ
3 1 albidv φ x ψ x χ
4 2 3 imbi12d φ x ψ x ψ x χ x χ
5 df-nf x ψ x ψ x ψ
6 df-nf x χ x χ x χ
7 4 5 6 3bitr4g φ x ψ x χ