Metamath Proof Explorer


Theorem nfbidv

Description: An equality theorem for nonfreeness. See nfbidf for a version without disjoint variable condition but requiring more axioms. (Contributed by Mario Carneiro, 4-Oct-2016) Remove dependency on ax-6 , ax-7 , ax-12 by adapting proof of nfbidf . (Revised by BJ, 25-Sep-2022)

Ref Expression
Hypothesis albidv.1 φψχ
Assertion nfbidv φxψxχ

Proof

Step Hyp Ref Expression
1 albidv.1 φψχ
2 1 exbidv φxψxχ
3 1 albidv φxψxχ
4 2 3 imbi12d φxψxψxχxχ
5 df-nf xψxψxψ
6 df-nf xχxχxχ
7 4 5 6 3bitr4g φxψxχ