Metamath Proof Explorer


Theorem nfcoll

Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses nfcoll.1 _ x F
nfcoll.2 _ x A
Assertion nfcoll _ x F Coll A

Proof

Step Hyp Ref Expression
1 nfcoll.1 _ x F
2 nfcoll.2 _ x A
3 df-coll F Coll A = y A Scott F y
4 nfcv _ x y
5 1 4 nfima _ x F y
6 5 nfscott _ x Scott F y
7 2 6 nfiun _ x y A Scott F y
8 3 7 nfcxfr _ x F Coll A