Metamath Proof Explorer


Theorem nfcoll

Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses nfcoll.1 _xF
nfcoll.2 _xA
Assertion nfcoll _xFCollA

Proof

Step Hyp Ref Expression
1 nfcoll.1 _xF
2 nfcoll.2 _xA
3 df-coll FCollA=yAScottFy
4 nfcv _xy
5 1 4 nfima _xFy
6 5 nfscott _xScottFy
7 2 6 nfiun _xyAScottFy
8 3 7 nfcxfr _xFCollA