Metamath Proof Explorer


Theorem nfcrALT

Description: Alternate version of nfcr . Avoids ax-8 but uses ax-12 . (Contributed by Mario Carneiro, 11-Aug-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nfcrALT _ x A x y A

Proof

Step Hyp Ref Expression
1 df-nfc _ x A y x y A
2 sp y x y A x y A
3 1 2 sylbi _ x A x y A